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Facultad de Informática, Universidad Complutense

Email: Pedro.Valero@ciemat.es

Abstract—In this work we present the first version of ROSAA,
Rosa Analyzer, using a GPU architecture. ROSA is a Markovian
Process Algebra [11] able to capture pure non-determinism,
probabilities and timed actions; Over it, a tool has been developed
for getting closer to a fully automatic process of analyzing the
behaviour of a system specified as a process of ROSA, so that,
ROSAA [10] is able to automatically generate the part of the
Labeled Transition System (occasionally the whole one), LTS in
the sequel, in which we could be interested, but, since this is a
very computationally expensive task, a GPU powered version of
ROSAA which includes parallel processing capabilities, has been
created to better deal with such generating process.

As the conventional GPU processing loads are mainly focused
on data parallelization over quite similar types of data, this work
means a quite novel use of these kind of architectures, moreover
the authors do not know any other formal model tool running
over GPUs.

ROSAA running starts with the Syntactic analysis so gen-
erating a layered structure suitable to, afterwards, apply the
Operational Semantics transition rules in the easiest way. Since
from each specification/state more than one rule could be applied,
this is the key point at which GPU should provide its benefits,
i.e., allowing to generate all the new states reachable in a single-
semantics-step from a given one, at the same time through a
simultaneous launching of a set of threads over the GPU platform.

Although this establishes a step forward to the practical
usefulness of such type of tools, the state-explosion problem arises
indeed, so we are aware that reducing the size of the LTS will be
sooner or later required, in this line the authors are working on
an heuristics to properly prune an enough number of branches
of the LTS, so making the task of generating it, more tractable.

I. INTRODUCTION

Formal methods are more used as Computer Science be-
comes a more mature science; this happens due to the fact
that formal methods provide software designers with a way to
guarantee high security and reliability levels for their products,
and what is more, formal methods would allow to find software
errors in the earliest stage of the software development life
cycle so making it significatively cheaper. The main problem
is that for systems having a size or a complexity level quite

big, the analysis could be difficult to be developed, mainly
because of two reasons, the first comes from the size of the
graphical model generated, the second is because the most
times these analysis are made by hand; we begin with the latter
so presenting a tool able to apply automatically the operational
semantics of the Process Algebra, ROSA. This evolution is
required by the size of the LTS which makes the problem of
generating it, very computationally expensive, so that we have
assumed the need of a parallel code of the tool; for the sake
of giving the most high expectations to its performance, we
have decided to implement a parallel GPU powered version
of ROSAA that is here being presented.

The existence of formal models tools is more than twenty
years old, e.g., UPPAAL tool [1] gives to designers a good
environment to use timed automata for such task; it also
provides a framework having some analyzing skills. TINA
is a frequently used tool [2] in order to use Petri Nets for
such sort of work. Several tools have been developed for the
sake of applying Process Algebras, the most known could be
PEPA Workbench [6] which was developed over PEPA process
algebra [7]. ROSA is a Markovian Process Algebra [11] which
also has a tool [10]. However, the main problem of process
algebra based tools is to deal with the state explosion arisen
in the labeled Transition System (LTS), because of this, some
of the process algebra research lines are searching the way to
reduce the size of the LTS to be generated, and so to avoid
this problem as much as possible [12], anyway the problem
of the computatinal cost of generating LTSs is still there, and
we have decided to go for it mainly by designing a parallel
running version of the tool of ROSA and, what is completely
new, implementing it over a GPU platform.

Due to increased needs to reach a more computational
capacity and the incursion of environments GRID, CLOUD,
virtualization, . . . , along with the limitations of current CMOS
technology and the excessive power consumption reached
by current platforms, it is necessary a global rethinking of



Fig. 1. Activity diagram for Semantic nodes analysis process

software and hardware design. In this context the current
GPUs (many-core architectures) are one of the new massively
parallel platforms. The main feature of these devices is a
large number of processing elements integrated into a single
chip, which reduces significantly the cache memory. These
processing elements can access to a local high-speed external
DRAM memory, connected to the computer through a high-
speed I/O interface (PCI-Express). Overall, these devices can
offer a higher main memory bandwidth and can use data
parallelism to achieve higher floating point throughput than
CPUs [4].

Fig. 2 describes the architecture of modern NVIDIA’s
GPUs. It consists of a number of multiprocessors and each
multiprocessor has a set of simple cores. All multiprocessors
share the same main memory, called “global memory”. In
addition, all cores of one multiprocessor can access the same
“shared memory”. Moreover, they offer the highest ratio
performance/cost and an efficient design in terms of power-
performance [5].

In this paper we present the GPU powered ROSAA, a tool
able to build the LTS of a given ROSA process, by means of
applying those operational Semantic rules which must be used
for that input process; In particular, at any level of the LTS, the
generating procedure of the next (level below it) is computed
at the very same time in a single GPU platform, so showing

Fig. 2. GPU architecture

an unusual field for these architectures, since, first it is not the
classical data parallelization, and second, the structure of the
code to be launched simultaneously can perform quite different
traces according to the type of the “node” to be computed.
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Fig. 3. Semantic Tree Example

This paper is structured as follows, section 2 provides a
brief description of ROSA analyzer way of working; Section
3 describes the GPU powered scenario supporting this imple-
mentation and the key issues of its running over it. In order to
show its skills, section 4 provides a case study, and to finish
with conclusions and future work are stated in the last section.

II. ROSA ANALYZER TOOL

ROSA analyzer, ROSAA, was formerly developed in JAVA,
this choice was taken looking for optimizing the handling
with some complex data structures, as both the syntactic and
semantics trees supporting the layered syntactic structure of
ROSA specifications, the first; and the LTS, the latter.

A. Syntactic analysis

ROSA analyzer takes as INPUT a ROSA process, i.e.,
a system specified according to ROSA syntax, but this is
quite far to be the optimum description in order to check the
conditions to apply the rules of the operational semantics of
ROSA.

Let us consider as example the ROSA process
< a, 0.3 > .(< b,∞ > ⊕ < c, 2 >)||{e} < d,∞ >.
According to the procedure captured in fig. 1 it is required

first to check whether the process is deterministic, but the
presence of ⊕ does not give right away a FALSE to the
function DeterministicStability, instead, it is needed to check
if such a ⊕ is available immediately or not, which leads us
to analyze “when” this ⊕ will be enabled, which operators
will be available then, and so on.

All the considerations to be followed, lead us to consider the
operators priorities map that is easily and thoroughly captured
in its syntactic tree, see fig. 4, where the higher syntactical
priority the elements/operators have, the closer to the top they
are located. Moreover this structure is not only optimized
to check the general conditions of the group of rules to be
applied, but also both to check the upper side of the operational
semantics rules, and, to do the necessary modifications to the

process which is being analyzed in order to generate (tentative)
new nodes.
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Fig. 4. Syntactic Tree Example

B. Semantic analysis

Once we have defined a proper structure for the process’
syntax, it is time to apply the rules of the operational semantics
of ROSA so as to generate its corresponding LTS. As usual this
LTS is formed of arcs (representing transitions), and, nodes
(representing states) which are themselves ROSA processes
represented as stated in previous subsection, therefore in each
Semantic tree node will appear a Syntactic tree.

Fig. 3 shows the LTS that ROSA associates to the process
< a, 0.3 > .(< b,∞ > ⊕ < c, 2 >)||{e} < d,∞ >
When the root node has to be analyzed in order to apply

the proper semantic rule, the first question to answer is
whether this process is deterministically stable, the answer
is YES (DeterministicStability function outputs TRUE), then
it is needed to check if the process can only evolve by the
execution of any action, the answer is YES (Action function
outputs TRUE), which means that the tentative rules to be
applied belong to the set of Action Transition Rules, table I.



(A-Def)
a.P

a,∞−→ P 〈a, λ〉.P a,λ−→ P

(A-Ext) P
a,λ−→ P ′ ∧ a /∈ Type[Available[Q]]

P + Q
a,λ−→ P ′

Q
a,λ−→ Q′ ∧ a /∈ Type[Available[P ]]

P + Q
a,λ−→ Q′

(A-Par) P
a,λ−→ P ′ ∧ a /∈ Type[Available[Q]] ∪A

P ||AQ
a,λ−→ P ′||AQ

Q
a,λ−→ Q′ ∧ a /∈ Type[Available[P ]] ∪A

P ||AQ
a,λ−→ P ||AQ′

(A-RaceExt) P
a,∞−→ P ′ ∧Q a,λ−→ Q′ ∧ λ 6=∞

P + Q
a,∞−→ P ′

P
a,λ−→ P ′ ∧Q a,∞−→ Q′ ∧ λ 6=∞

P + Q
a,∞−→ Q′

(A-RaceExtCoop) P
a,λ1−→ P ′ ∧Q a,λ2−→ Q′ ∧ (λ1 =∞ = λ2 ∨ λ1 6=∞ 6= λ2)

P + Q
a,λ1+λ2−→ P ′ ⊕ Q′

(A-RacePar) P
a,∞−→ P ′ ∧Q a,λ−→ Q′ ∧ λ 6=∞∧ a /∈ A

P ||AQ
a,∞−→ P ′||AQ

P
a,λ−→ P ′ ∧Q a,∞−→ Q′ ∧ λ 6=∞∧ a /∈ A

P ||AQ
a,∞−→ P ||AQ′

(A-RaceParCoop) P
a,λ1−→ P ′ ∧Q a,λ2−→ Q′ ∧ (λ1 =∞ = λ2 ∨ λ1 6=∞ 6= λ2) ∧ a /∈ A

P ||AQ
a,λ1+λ2−→ P ′||AQ ⊕ P ||AQ′

(A-Syn) P
a,λ1−→ P ′ ∧Q a,λ2−→ Q′ ∧ a ∈ A

P ||AQ
a,min[{λ1,λ2}]−→ P ′||AQ′

TABLE I
ACTION TRANSITION RULES

As the root node is a parallel operator, the set of, so far
tentative rules is formed of A-Par, A-RacePar, A-RaceParCoop
and A-Syn; Once checked the conditions it is immediate that
the only rule to be applied is A-Par, so generating these two
new nodes:
• (< b,∞ > ⊕ < c, 2 >)||{e} < d,∞ > after executing
< a, 0.3 >

• < a, 0.3 > .(< b,∞ > ⊕ < c, 2 >)||{e}0 after
executing < d,∞ >

This procedure has to be repeated over these two new nodes,
so, easily there could appear 4 nodes in the next (upside-down)
layer of the LTS and so on.

As it is well known, the number of nodes to be processed
could be exponential, therefore, even when dealing with not
very big examples the need for more computational power for
the sake of making these formal models tools as much usable
as possible, is out of doubt.

III. GPU POWERED ROSAA

Our test bed is a “FERMI NVIDIA GPU” architecture.
Table II shows its main characteristics in terms of on-chip

memory hierarchy and architecture.
This architecture has been controlled by means of the

high level programming language CUDA [9] introduced by
NVIDIA. Calculations in CUDA are distributed into a mesh
or grid of CUDA blocks of the same size (number of threads).
These threads run the GPU code, known as kernel; note that
although this kernel is originally called by the CPU, it is
executed in the GPU, as seen in fig. 5. Each CUDA block
is executed in a single multiprocessor.

GPU Architecture FERMI (C2070)

Multiprocessors 14

Cores 448

Memory 6 GB

Memory Bandwidth 177.4 GB/s

Max. threads blocks 65535

TABLE II
FERMI CHARACTERISTICS

Fig. 5. Grid of CUDA blocks



Every CUDA code is divided into two different parts, CPU
code and GPU code. The CPU code, provides the instructions
to be performed by the CPU, e.g. allocating data on CPU and
GPU, transferring data between GPU and CPU and launching
kernels. On the other hand, the GPU code (kernel) provides
the instructions to be executed in the GPU.

A. Multi-Kernel

Multi-kernel is defined as the capability to execute more
than one kernel on the same GPU at the same time. Recently,
this new feature has been included into CUDA, and, is
available over FERMI or more recent architectures of NVDIA.
Nevertheless, we have used “our” alternative approach [14],
compatible with all NVIDIA GPUs, which lacks of these
classical constraints of CUDA approaches.

Fig. 6. CUDA Example

First of all, in order to show the changes required to carry
out the execution of this multi-kernel fashion, the example
of fig. 6 describes the normal use of current many-core
architecture. The pseudocodes are divided into CPU code
(code executed by CPU), and GPU code (code executed by
GPU).

Fig. 7. CUDA Method

CUDA approach consists in using a special data-type called
“stream”. Each kernel needs its own “stream”, which has to
be included as parameter in the kernels. The kernels with such

stream associated are executed at the same time. This approach
allows to execute up to 16 different kernels. A pseudocode of
this approach is shown in fig 7, in which both aformentioned
kernels are used.

In the alternative approach a different way to manage
multi-kernel’s execution is carried out. The kernels with such
associated stream are executed at the same time. This approach
allows to execute up to 16 different kernels. A piece of pseu-
docode is illustrated in fig. 7, in which both aforedmentioned
kernels are used. In this approach, it is not necessary to use
a special data-type and there is no limit on the maximum
number of kernels. The kernels are mapped on one or on a set
of threads blocks. Thus, different kernels are executed at the
very same time and independently. In this case, the number
of launched threads equals the addition of all threads, and, all
variables have to be included as parameters in the same call.
The pseudocode shown in fig. 8 shows the way of using this
alternative method.

Fig. 8. Alternative Method

IV. NEW DATA STRUCTURES AND NEW SOFTWARE DESIGN

Although theoretically the GPU implementation might seem
easy, in practice it is particularly hard since GPUs have a
huge amount of restrictions. One of the most demanding is
that, GPUs do not support any dynamical memory handling.
It prevents handling data structures by means of its classical
algorithms, which consists in using pointers to allocate and
to access nodes dynamically [13]. Despite the fact dynamical
handling of data structures is a good way to deal with arbores-
cent structures, our aim to achieve a GPU implementation has
forced us to develop a new way to deal with binary trees and
with the n-ary trees responsible for storing the generated LTS.

The aforementioned restriction requires to set, beforehand, a
static memory size for each data structure. Taking into account
dynamical memory handling comes from syntactic trees, we
have mapped syntactic trees into arrays. Arrays provide us
a static memory handling, and what is more, they are a
very appropriate structure for GPU computing. In order to
be able to map the syntactic tree into an array, we defined an
indexation function which provides us the position in which
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Fig. 9. Syntactic tree mapped into array

nodes of the syntactic tree should be stored depending on its
binary identifier. This indexation function reserves consecutive
positions for nodes allocated at the same level within the
syntactic tree.

Any node has to be stored in the following position of the
array (taking n as the tree level in which the node is located
-root node has level 0-):
Pos = 2n + 1 + V ALUE(Node.Key)

Fig. 9 illustrates how the previous process
< a, 0.3 > .(< b,∞ > ⊕ < c, 2 >)||{e} < d,∞ >

is mapped into an array.
We would like to point out that (assuming that several LTS

nodes can be executed simultaneously over this implementa-
tion) since the memory requirements of one LTS node is 2
MB, it would be possible to carry out up to 3000 LTS nodes
at the same time in only one GPU call (kernel) by using our
alternative method described in Section III-A.

In this first GPU approach, it is exploited a coarse grain
parallelism, in which the solver of each LTS is mapped on
one block of threads. Although, it is possible to use several
threads per block, we use one thread per block (per LTS), fig.
10, since the generation of each LTS node is mainly sequential.
In this way, it is exploited the parallelism inter-LTS, therefore
the potential parallelism of the GPU is efficiently used so

allowing to generate several LTSs on different multiprocessors,
since each one can execute its own instructions flow (LTS)
independently, on the same GPU device.

Fig. 10. Architecture scheduling



V. CASE STUDY: SIMPLE MULTI-SERVER MULTI-QUEUE
SYSTEM

Communication systems have been extensively used in order
to show how formal methods tools work [3], [6]. In particular,
we have modelled a Multi-Server Multi-Queue (MSMQ) sys-
tem which consists of a set of servers which circulates among
different nodes providing services [6], [8].

Concretely, in our model we have considered two servers
and two nodes. These nodes have a customers petitions queue,
which will be able to store just a single petition. On the
other hand, servers must search into nodes queues, in order
to find requests to be served. It follows a release-by-resource
mechanism, which means that servers will be continuously
checking whether are new petitions in nodes queues or not;
and, while they are working on a petition from a node, this
node can not be accessed by any other server.

In previous models of these kind of systems, nodes queues
checking was carried out in a sequential way, however, we
assume that we do not have any order to check nodes. This
characteristic has been used, in order to show how ROSA
process algebra (and consequently ROSAA) is also able to
deal with non-deterministic behaviours.

A. ROSA Specification

ROSA process algebra specification for each component of
MSMQ system has been defined as follows:

Nodej =< in, λ > .available. < serv, µ > .Nodej +
+ empty.Nodej

Serverj = available. < serv, µ > .Serverj +
+ empty.Serverj

MSMQ = (Node1||Node2)||{available,serv,empty}
||{available,serv,empty}(Server1||Server2)

As expected, Server process represents servers behaviours.
There are two possibilities by which a Server process can
behaves: either it engages a node which has a petition to
process (action available), or the server checks a node which
has an empty queue (action empty). In the former, once
both node and server are engaged, they complete their work
(action serv) taking a time modelled by a negative exponential
random variable of parameter µ. The latter represents that the
node queue is empty, then they do not perform any action.
Anyway, once described actions have been finished, the server
restarts its initial behaviour.
Node process represents nodes behaviours, where a node

can either get a customer petition which is defined with action
in, or being empty. If the node is empty, as server behaves,
it does not execute any action, which allows the server to
search into another nodes. Again, when there is a customer
petition into the node queue, it synchronizes by means of
available action, and finally serves the required petition,
which is represented by serv action.

It is important to point out that, since this version of ROSAA
is not able to deal with that performance analysis defined in
ROSA; some parameters as λ and µ have not been taken into
account, because we are focused on functional behaviours and
from the computational expensive cost point of view it does
not matter. On the other hand, the restrictions demand by input
syntax of ROSAA (which was defined for ROSA analyzer
[10]), force us to rewrite MSMQ systems as follows:

Sj = a.s.Sj + n.Sj

Nj = i.a.s.Nj + n.Nj

MSMQ = (N1||{}N2)||{a, s, n}(S1||{}S2)

Due to the large size of the generated LTS, which is com-
posed by 736 nodes and 1238 transitions, it is not appropriate
to be shown in this format, so a detailed version of it is free
available at:

http://raulpardo.files.wordpress.com/2012/12/msmq lts.pdf
From the size of this LTS and the width of each level, it is

easy to see how this parallel design could help us to improve
ROSA analyzer performance during the LTS building process.

VI. CONCLUSIONS AND FUTURE WORK

To sum up we can say that aimed for the wish of making
formal models as usable as possible, and dealing with the
states explosion problem when generating the LTS associated
to a process, we have implemented a GPU powered tool able
to apply a formalism as ROSA, a Markovian Process Algebra
that captures non-determinism, probabilities and timed actions.
This represents an unconventional and very novel use of GPUs
platforms that deserves to be analyzed from this perspective
rather than for the pure performances (speed-up) one, since it
is our first prototype in this, hopefully, long way.

An almost classical case study has been presented, for the
sake of illustrating both the real need of this improvements
over Formal Models Tools (quite width LTS associated) and
the capabilities of this GPU powered ROSAA.

Although we have reached a more practical and computa-
tionally fast use of ROSA process algebra, the state explosion
problem has not been solved yet; as it is an exponential hard
problem, the need of making it cheaper tractable still exists,
so we keep looking for an heuristic that leads the searching
for a given node through as few states as possible.
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